
The flow regime studied above can also be singled out in the more general case when 
instead of the linear velocity profile at the bottom of the boundary layer (1.4), a power- 
law profile ~IY(xl, Y § 0) = %yK, where 0 < k < ~, holds. The flow will be a creeping flow 
if 

[3/(k-I-~) ~,  |/2<~'.~.2, 
2>n>ll ~, k>2. 

The author is very grateful to A. V. Zubtsov and V. F. Molchanov for fruitful dis- 
cussions. 
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PENETRATION OF A BLUNT BODY INTO A SLIGHTLY COMPRESSIBLE 

LIQUID 

A. A. Korobkin UDC 532.59:522.2 

Introduction. We will consider ~he initial stage of nonsteady state motion of a liquid 
produced by its penetration by a solid body. Initially (t' = 0) the liquid is at rest and 
the body touches the free surface at a single point. The region ~(t'), occupied by the 
liquid, varies with time, while its boundary ~(t') consists of the free surface Ei, and the 
solid surface of the penetrating body E2, the contact line between them F, and, possibly, 
the inmobile solid walls E3 (as for example, in landing of an airplane on the surface of a 
body of water). The velocity range is assumed such that the Reynolds number Re >> 1 while 
the Mach number M << i. 

Quantitative information on the penetration process can be obtained only from numerical 
calculations. However, the accuracy of such calculations decreases at times when the flow 
topology changes, singularities develop in the pressure field, infinite accelerations of 
liquid particles occur, etc. Singularities like these must be treated analytically. Numeri- 
cal solution of the problem of penetration of sharp bodies (wedges, cones) into an incompres- 
sible liquid were constructed in [I], and the pressure distribution obtained for the contact 
spot agreed well with experiment. But for blunt bodies use of the ideal incompressible 
liquid model leads to infinite pressures at t' = 0, no matter how low the penetration veloc- 
ity [2]. This is because the incompressible liquid model in which the perturbation propa- 
gation velocity is assumed infinite is not capable of describing the important stage of the 
process of penetration of a blunt body. In fact there exists a time t' of the order of 
several psecs, such that at t' < t' the contact line F moves with a velocity exceeding the , 
speed of sound in the liquid. The perturbation front is then attached to the line s and the 
perturbed portion of the liquid is limited by the solid surface on one side and the shock wave 
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front on the other. Until the shock wave breaks away Irom the contact line the free surface 
remains undisturbed. Thus, to obtain realistic results in this stage of the calculations it 
is necessary to use a compressible liquid model, independent of the value of the Mach number 
M. The soiutions constructed and studied in [3] for small times t' for penetration of a 
blunt body into an ideal incompressible liquid describe the process well for t' >> t' when 
the shock wave has departed sufficiently from the contact line. As will be shown below, this 
solution should be considered as the major term in an external (relative to t' = 0) 
asymptotic expansion as M § 0 of the solution of the problem of penetration into an ideal 
compressible liquid. 

i. Problem Formulation. We will limit our study to the planar case of penetration of 
a parabolic contour. 

We will consider the planar nonsteady-state isentropic motion of an ideal compressible 
liquid, which at the moment t' = 0 fills the semiplane y' < 0 and is initially at rest (as 
before, the primes denote dimensional variables). The line y' = 0 is the free surface at the 
initial moment. It is assumed that surface tension and external mass forces are absent. 

Let R and V be positive constants. For a fixed t' the equation 

y '  = ( i / 2 B ) x  '2 - -  V t '  ( 1 . 1 )  

defines a parabola in the plane x', y', which we will identify with the rigid solid contour. 

At t' = 0 this contour is tangent to the free surface at x' = 0. Equation (i.i) speci- 
fies the motion of the contour along the y' axis at a constant velocity V. We must specify 
the liquid motion which then develops, assuming that the portion of its boundary which is not 
a portion of the solid contour remains free. In the plane of the Lagrangian coordinates 
$', ~' the region occupied by the liquid is known beforehand -- it is the semiplane n' < 0. 

We choose as the length scale the radius R of the parabola of Eq. (i.i) at the point 
x' = 0, while for a time scale factor we use the quantity R/V, and transform to dimensionless 
variables (which are denoted by the absence of primes). 

Since motion commences from a state of rest and external mass forces are absent, by 
Lagrange's theorem [4] the flow of the ideal compressible liquid will be nonturbulent. Conse- 
quently, there exists a potential for the velocity ~(x', y', t'), such that xt = ~0x~ Yt = 

r 
~oy, where ~o=RV~o(x,y,t). The function ~0 satisfies the equation [5] 

(1.2) S(p)= V~c-2(p) 
\-- 77 

(p(~, ~, t) is the liquid density, c(p) is the local speed of sound). We combine with Eq. 
(1.2) the boundary conditions (on the free surface 21 the pressure p is constant, on the 
contact spot 12 the nonpenetration condition is satisfied), and initial conditions (% = 0, 

~0t = 0 at t = 0). 

We introduce the Lagrangian coordinates ~, ~ in which the flow region is fixed in a 
manner such that x = ~, y = ~ at t = 0. In these variables Eq. (1.2) appears as 

S ( p ) q ) t t  - -  Aqo o ---- S(p)L(q>) for )1 < 0, ( 1 . 3 )  

Aq~o : (N*-~V0(N*-IVCq)),  xL ---- N*- lVgq  ), 

where T(~, ~, t) : T0(x(~, ~, ~), t); N ~ 0(x)/0(~) is the Jacobi matrix; L is a nonlinear differential 

operator; x = (x, y); ~ = (~, n). We denote by a(t) the mapping into Lagrangian coordinates 

of the contact points El and E2. Then at any t in some interval [0, T] the line D = 0 
bounding the liquid consists of three regions: ~ <--a(t), [El ~a(t), ~ > a(t) , where the function 
a(t) must be determined. The sections ]~[ > a(t) are free boundaries. 

We will define the boundary conditions which must be satisfied by the unknown function 
~(~, t). The Bernoulli integral for the potential flow of a compressible liquid has the form 

~oo~ + (l /2)q ~ -6 i = 0, ( 1 . 4 )  
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where qZ = [V%[2; i is the enthalpy related to the pressure p and the density O by the ex- 

pression di = p-Xdp. Considering that ~t = q)0t + q2, we rewrite Eq. (1.4) in Lagrangian 
coordinates: 

Tt =: (1/2)q: -- i. 

Since on the free surface p = const, and consequently i = const also, we have 

(Pt = (l/2)q 2 for i[] == 0 , I~ ] > a(t) ( 1 . 5 )  

(we recall that the potential T is defined to the accuracy of a constant term). 

On the contact spot Z2 we substitute the nonpenetration condition 

(N* ~V~(p - -  v) n = 0, I~I < a(t), ~1 == O, (1.6) 

where v = (0, --i); n is the normal to the surface Z2. We add to the problem the condition 
at infinity 

initial conditions 

~ - + 0  as [~ l - -~oo,  (1.7) 

= 0 ,  % = 0  at t = 0  (1.8) 

and r e q u i r e  t h a t  l i q u i d  p a r t i c l e s  l y i n g  on t h e  f r e e  s u r f a c e  Z~ n o t  p e n e t r a t e  t h r o u g h  t h e  
surface of the solid contour over the entire time of the motion [3] 

Y < ~ ( r  ~r ' 1 = 0 ,  I [ l > a ( t ) ,  ( 1 . 9 )  

w h e r e  X = x - -  ~, X = (X, Y ) .  

The p r o b l e m  t h u s  f o r m u l a t e d  i s  c o m p l i c a t e d  b y  n o n l i n e a r i t y  and  t h e  p r e s e n c e  o f  a n  u n -  
known b o u n d a r y  f o r  c h a n g e  i n  f o r m  o f  t h e  b o u n d a r y  c o n d i t i o n  (we r e c a l l  t h a t  a ( t )  m u s t  b e  
determined in the course of solution of Eqs. (1.3), (1.5)-(i.8) with the additional single- 
sided limitation Eq. (1.9) on displacement of free surface particles). 

2. Asymptotic Solution. We will seek a solution of Eqs. (1.3), (1.5)-(1.9) in the 
form of an expansion in powers of the parameter M, where M = V/co, co being the speed of 
sound in the liquid at rest, as M § 0: 

(p(~, t) -- q~<O)(~, t) :',- M+=q~(l>(~, t) -}- . "., 

,S(p) = M ~ " 81(M)Sl(p) -~- . . . .  a(t) = a(~ q- 8~(M)a(1)(t) + . . . .  

{ei(M)}, {~i(M)} are asymptotic sequences while mi(M) = o(M 2) for i ~i. Then the problem 
for the main term of the asymptote of the velocity potential as M § 0 has the form 

(2.1) 

( N o - ' V ~ ) ( N o - a V ~ t p ( ~  for ~ 1 < 0 ,  

. o v ~  for u = O , l ~ l > a ( t ) ,  

(No-~Vgfp ( ~  for ~1=0 ,  I ~ ] < a ( t ) ,  

q)(O) q)~0) = 0 for t = 0, 

(p(")-"+O for I ~ l +  oo, 

I X(O))~ Y(~ - - t  for q = O ,  I ~ l > a ( t )  

(2.2) 

and, moreover, 

N O = I + 0 (X (~ Y(~ (~, q), XI ~ N*- lw  ..(o, 

where I is a unit matrix. Problem (2.2), which describes penetration of a solid contour 
into an ideal liquid, was studied in [3] for the initial stage of penetration (t § 0). As 
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t ~ 0 the asymptotes of the unknown functions are given by 

W(o)(~, y, t) ~ h n ( V ; ~ - - a ~ ( t ) - - ; ) ( i  i - O ( V t ) ) ,  ; = ~ + iq, 

a(~ = 2 V t ( t  + O f i ) ) ,  ( 2 . 3 )  

9 

p ( ~  ~r  I ~ l < a ( t ) .  

Z e r o t h  a p p r o x i m a t i o n  ( 2 . 3 )  s a t i s f i e s  Eq.  ( 2 . 2 )  t o  t h e  a c c u r a c y  o f  0 ( r  e v e r y w h e r e  e x c e p t  
n a r r o w  z o n e s  n e a r  t h e  c o n t a c t  p o i n t s ,  t h e  s i z e  o f  w h i c h  i s  t h e  o r d e r  o f  m a g n i t u d e  o f  t z / z  a s  
t § 0 .  W i t h i n  t h e s e  z o n e s  t h e  f l o w  p a t t e r n  was  r e f i n e d  i n  [ 3 ] .  

I t  h a s  a l r e a d y  b e e n  n o t e d  t h a t  t h e  m a i n  t e r m  o f  t h e  p r e s s u r e  a s y m p t o t e  p (O)  h a s  a s i n g u -  
l a r i t y  at the point t = 0 as M + 0, i.e., expansion (2.1), considered as asymptotic, loses 
force in the immediate vicinity of the point t = 0, which, as will be shown below, is of 
order O(M ~) as M § 0. To refine the flow structure within this vicinity it is necessary to 
construct internal expansions. It is in just this region that the flow characteristics are 
dominant for the problem as a whole. 

3. Internal Expansion. We will define the internal variables u, B, r with the ex- 
pressions ~ = ~x(M)a, n = ~t(M)B, t = ~o(M)~ and seek an internal expansion of the solution 
of Eqs. (1.3), (1.5)-(1.8) in the form 

q)(~, x I ,t) = eo(M)W(~ 13, z) + sI(M)TO)(cz, 15, x) + . . . .  ( 3 . 1 )  

a(t) = 81(M)b(~ ) + 82(M)b(~)(~) + . . . .  

a r e  a s y m p t o t i c  s e q u e n c e s  a s  H § 0 .  A c c o r d i n g  t o  t h e  p r i n c i p l e  o f  where {ei (M)}~=0, {8i (M)}~=I 
m e r g i n g  a s y m p t o t i c  s o l u t i o n s  [ 6 ] ,  i t  f o l l o w s  f r o m  Eq. ( 2 . 3 ) ,  f i r s t ,  t h a t  

~-lmb(x) -+  2 ~60--~181(M) s ~ -+  co, 

whence we define ~l(M) = ] /~o(M) ,  and second, that 

W(~ ]/rzz - -  b*(*) - -  z) ~ ->- 81(M)/e0(M) ~ * ->" ~ ,  ( 3 . 2 )  

w h e r e  z = a + i ~ .  From c o n d i t i o n  ( 3 . 2 )  we o b t a i n  

%(M) = 8~(M) = ~fS0(M). 

S u b s t i t u t i n g  Eq.  (3.1) i n  Eq. (1.3) and  c o n d i t i o n s  (1.5)-(1.9), we r e t a i n  t h e  m a i n  t e r m s  a s  
M + 0.  The  c o n d i t i o n  o f  n o n t r i v i a l i t y  o f  t h e  s o l u t i o n  o f  t h e  p r o b l e m  t h u s  o b t a i n e d  l e a d s  t o  
t h e  r e q u i r e m e n t  ~x(M) = M. The m a i n  t e r m  o f  t h e  a s y m p t o t e  o f  t h e  e x t e r n a l  e x p a n s i o n  o f  t h e  
v e l o c i t y  p o t e n t i a l  ~ a s  M § 0 s a t i s f i e s  t h e  r e l a t i o n s h i p s  

~(o) AtF(0) 0 for I ~ < 0 ,  
T %  - -  ~__- 

Wh~ fo~ ~ = 0 ,  Ioc[<b('O,, 

W($)=O co, l~=O, I~l>b('O, 

~F (~ = O, ~tG (~ = 0 fo~ "~ = O. 

From the merger principle it follows that 

(3.3) 

b(T) co 2~ ~ z-+ oo, (3.4) 

so that Eq. (3.2) is satisfied automatically (it will be sufficient to consider the asymptote 
of the solution of Eqs. (3.3), (3.4) at large T). We note that b(T) = 2~T for T~T,, where 
T, is the moment of shock wave exit onto the free liquid surface. 

From inequality (1.9) and nonpenetration condition (1.6) for T > T, it follows that 

I (3 5) y = ~ ( ~ + X )  2 - t  ~r  ~ = 0 ,  ~ = a ( t ) + 0 ,  T.M 2 < t < T 1 ,  

where TI is the moment of breakoff of the rotation region of the liquid free surface from the 
body surface. We recall that X, Y are the displacements of liquid particles along the E, 
axes, respectively. In the internal variables e, B, T for the zeroth approximation of the 
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velocity potential y(o)(u, B, r) we obtain from Eq. (3.5) 

T S I (3.6) '],I; '~ (~, (~), o, s) d~, = ~ b-' (0 -- ~, 
b (z)-~/2 

where the left side of the equation is the displacement of a liquid particle along the ~ axis 
over the time r (in the zeroth approximation displacement of free surface particles along 
the ~ axis is absent). Simultaneous solDtion of Eq. (3.3) and supplementary equation (3.6) 
gives the main term of the asymptote of the velocity potential as M § 0. Equation (3.4) is 
then satisfied automatically (it is sufficient to consider the asymptote of the solution of 
Eqs. (3.3), (3.6) for large r 

We will seek the quantity ~, in the form 

(0) 
�9 , = ~, + Zl (M) ~J) + .... 

where {xi(M))i~=~ is an asymptotic sequence as M § 0. The moment of exit of the shock wave onto 
the free surface is characterized by the fact that at �9 = ~, the velocity of shock wave mo- 
tion W' in the vicinity of the.:contact point and the velocity of motion of the contact point 
itself along the free surface coincide: b~(~) = W'/co at r = ~,. The zeroth approximation 
of this condition (W' § co as M § O) gives ~(,) = i/2. 

We will study the pressure distribution on the contact spot at r ~ 1/2 (the function 
b(~) is known beforehand). We introduce the following notation: 

u (~, ~) = ~(o)  (~,  0, ~), ~ (~, ~) = ~0)  (~, 0, ~), 

D = {(a, x) ll~l < b(~)}, 
p' = pocoV(q(O)(a, ~, ~) -~- Mq(~)(a, ~, ~) + . . .), 

where p' is the pressure and Co is the velocity of sound in the liquid at rest. The function 
u(a, ~) is related to the zeroth approximation for the pressure q(O)(~, O, ~) by the ex- 
pression 

and to w(a, r) by the expression [7] 

q(0)= --u~(a, ~), (3.7) 

1 ~ w(x, t) dxdt ( 3 . 8 )  
u (~, ~) = ~-d(_., ) ~/(~ _ 02 _ ( .  _ ~ ) 2  ' 

where  ~(~, T ) =  {x, t I c z - - ~ < x < o ~ ,  0 ~ t ~ , ~ x - - = - ~ % }  tJ {x, t[, O C < x < ( Z q - T , O ~ t < . c Z q - T - - X } .  

I f  (a, T) ~ D N ~(0, 3/2) , t hen  in  Eq. ( 3 . 8 )  t he  i n t e g r a t i o n  i s  p e r f o r m e d  o v e r  t h e  r e g i o n  D N 
o ( a ,  T) in  which  w(a ,  T) = --1. With the  a i d  o f  Eq. ( 3 . 8 )  we c o n s t r u c t  u ( a ,  T) ,  and t h u s ,  
the main term of the pressure asymptote q(O) at ~----0 [~I < ~, �9 ~. i/2 �9 It follows from 
Eqs. (3.7), (3.8)that 

(r q(O) (a, 0, x) ~ (a,-------7 K ~-~ t ~ (~, ~) , 

~(a,  "~) ---- ]/('~ + t /2 )  2 - -  ~z 2, I=l ~< 1 f ~ ,  ~ ~< 1/2,  

(3.9) 

where K(x) is a full elliptical integral of the first sort. We will present some special 
cases of Eq. (3.9): 

I) q(~ 0, 0) = i, i.e., at the moment t = 0 the pressure is equal to the hydraulic 
shock pressure p' = PoeoV; 

2) q(O) (=, 0, 1/2) = K (2  -1:2) a - '  ( i  - -  ~2) -112 ~ i  I = T ~ ) I  

3) g(o)(a, 0 , ~ ) = ( i _ _ 2 ~ )  -1 m, = = V ~ ,  T ~ ) .  

Equation (3.9) indicates that with increase in T the pressure distribution in the con- 
tact region becomes ever more nonuniform, and up to the time T! ~ = 1/2 the expansions of Eq. 
(3.1) lose force in the vicinity of the point T = 1/2, e = I, ~ = O. 

We will consider the pattern of perturbation wave motion. The shock front is the enve- 
lope of the family of curves 
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~ 4 - ( ~ - - X ) 2 = ( ~ - - ~ / 2 ) 2  ~ < 0 ,  [ X [ < ~ ,  ~ < ~ , ,  

which  can be  s p e c i f i e d  p a r a m e t r i c a l l y  i n  t h e  form [8] 

(z = ~,( ,  + I - -  ~,2/2), ~ = - ( ,  - -  X 2 / 2 ) l / t ~  (3.10) 

IZl<F~, ,<~,, 
where X is a parameter. 
contact point ~ = 2r 

Then the equation of the tangent to the shock wave front at the 
= 0 has the form 

Consequently, with increase in T, the angle formed by the tangent to the shock front at the 
point ( 2f~T, 0) with the ~ axis increases from zero at T = 0 to ~/2 at T = 1/2. 

On the shock front the conditions of mass and momentum conservation are given by [9] 

p ' ( W '  - u ' )  = p o ( W '  - Uo), p '  - po  = 9 o ( W '  - uo) (u '  - Uo), 

where W' is the speed of shock wave propagation in water with initial pressure po, density 
Po, and flow velocity uo (the prime denoting dimensional quantities). In our case po = 0, 
uo = 0, so that 

W ' =  I f ' ^  p' P' u ' = W ' ( I - - P o / P ' ) "  (3.11) 
' - -  Po Po :t y v  

The equation of state for water at sufficiently low pressure may be written in the form [9] 

p'  = B[(p'/po)n --  t ] ,  

where B = 3.085"i0 s' Pa, n = 7.15o Consequently, the speed of sound c' is related to the water 
density behind the shock wave front in the following manner: 

c '2 = dp'/dp' = c~ (O'/po) n-x, c~ = Bn/po 

o r  c '  = Co(1 + nMZp) ( n - 1 ) / 2 n  Here  p '  = OoV2p, and V i s  t h e  v e l o c i t y  o f  t h e  p e n e t r a t i n g  
body .  

It is natural to assume that M2p § 0 as M § 0 over the entire flow region. Then 
c' § co, W' § co, and Eq. (3.9) gives the asymptote of the pressure distribution on the con- 
tact spot as M § 0 (T~< T,). We note that the shock wave must exit onto the free liquid 
surface at T, < 1/2, since pressure increase behind the shock wave front (see Eq. (3.9)) 
leads to an increase in the velocity of its motion W' according to Eq. (3.11). 

We will seek the value of the pressure p, at the contact point at T = T, in the form 

p ,  = Vo (M) Iio + v~ (M) I I ,  + , . . ,  

where {v~(M)}~-0 is an asymptotic sequence as M § 0. Substituting expansion (3.12) 
first expression of Eq. (3.11), we obtain 

Then the condition for shock wave exit onto the free surface (2T,) -I/2 
first approximation leads to the relationship 

(1) n + t 
- - z x ( M ) ~ ,  = 4 M ~ v 0 ( M )  II0. 

As T § T,, on the shock wave front, the position of which is given by Eq. 

gives 

(3.12) 

in the 

= W'(T,)/Co in the 

(3.13) 

(3.10), Eq. (3.9) 
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Mvo (M) H o = - -  (2% 1 (M) %-(t)/-z/ �9 ( 3 . 1 4 )  

N o n t r i v i a l i t y  o f  Eqs .  ( 3 . 1 3 ) ,  ( 3 . 1 4 )  r e q u i r e s  t h a t  %t = M2vo, M%lVO = t o r  vo(M) = M - a ~  2 , 

%1(M ) = ~ Solving Eqs. (3.13), (3.14) with consideration of the expressions obtained for 

the functions vo(M), xI(M), we will have T~ ) = --F( n* i)/8, H 0 = ~(n + i! . Consequently, 
for small M the maximum pressure occurs at t, =(M2/2)(I+O(FM)),~,=M(I+O(FM)) and its 
value is given by 

;: = V2-7-  + t)0o4/ v   (t + o (  

Thus, as M § 0 the pressure at the contact points at time z, is much greater than the 
initial shock pressure. Of course the dimensional pressures remain finite and tend to zero 
together with the penetration velocity V. 

From the expressions presented above it is simple to obtain an expression for the liquid 
velocity behind the shock wave front u' at time T,: 

= V2/(  + ( t  + 

Consequently, even at low penetration velocities V the velocity u' may be quite high. 

Equation (3.9) indicates that at T <T, the kinetic energy of the solid body is partially 
transformed into elastic energy of the compressed liquid and accumulated therein. At time T, 
the free surface of the liquid deforms, creating a counterflow. The elastic energy of the 
compressed liquid is transformed into kinetic energy of the flow. If we consider the function 
b(T) known, then problem (3.3) is equivalent to the problem of supersonic flow around a thin 
wing with sharp edges [7], where the Mach number is equal to two. Using the method proposed 
in [7] it can be shown that at T > T, with increase in T the pressure decreases at each 
point of the contact spot. 
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